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A spherical pendulum is the simplest example of an oscillator with two degrees of free- 
dom of equal frequency. Many of the phenomena typical of the behavior of a spherical pendu- 
lum also show up in the dynamics of systems with distributed parameters with a perlodlc 
coordinate. Examples include rings, cylindrical and spherical shells, circular plates, and 
media inside cylindrical and spherical cavities. Therefore knowledge of the properties of 
a spherical pendulum gives an understanding of oscillations in these other systems. 

In the present paper we consider of the chaotic motion of deterministic parametrlc 
oscillations of a kinematically driven spherical pendulum, it is shown that chaotic oscilla- 
tions result from the interaction of the pendulum with a driving mechanism of finite power. 
The generation of chaos caused by interaction with the driving mechanism is studied using 
averaged equations of motion which closely approximate the behavior of real systems [4]. In 
the case of an ideal (infinite power) driving mechanism the averaged equations describing 
parametric oscillations of a spherical pendulum have only regular solutions in the steady 
state [9, i0]. The change in the type of dynamical system (the pendulum) from deterministic 
[3] (having only regular motion) to chaotic (capable of dynamical chaos) due to interaction 
with an energy source shows the importance of properly taking into account the interaction 
process. This is particularly true for experimental studies of the properties of dynamical 
systems. Chaos in the system can be caused only by the finiteness of the power of the driving 
mechanism, and not by the properties of the system itself. 

We consider the system show schematically in Fig. la. A crank-shaft slide bar mechanism 
connects the rotor of a motor with the point of support of a physical pendulum. When the 
crankshaft a turns by an angle ~ the slide bar together with the support (when the length of 
the connecting rod b >> a) suffers a displacement v(t) = -a cos ~ along the vertical axis of 
a fixed coordinate system. In Cartesian coordinates xyz the kinetic energy can be written 
in the form [i, 2, 7, 8] (in a fixed coordinate system) 

1 1 • £~2 (~ v)Z], T---- T I+2 q- T m Ix 2 -t- -t- -i- 

and the potential energy has the form 

(i) 

V = m g ( l - - z - - v ) ,  ( 2 )  

where x, y, z are the Cartesian coordinates of the center of mass of the pendulum; I is the 
moment of inertia of the rotor of the electric motor; m is the mass of the pendulum; and 
is the reduced length of the pendulum. The masses of the slide bar and support are neglected. 

Following [71, we introduce the new variables = and ~ defined as x = ~ sin =, y = ~ sin 
~. Because for a pendulum we always have the relation x 2 + y2 + z 2 = ~2, it follows that 

z = ~/i - sin 2 ~ - Sin2~. For small ~ and $ the Lagrangian of the system L = T - V can be 

written in the form [2, 7, 8]: 

L = -7- T + + - -  % × 

o . . ° 3  } 
X -2- sm ~ .q- ~ -- gml --fi" sin~ q~ 2 

o:~ B z [> ~213~ a \ ( 3 ) 
24 -t- 2 24 % - T - t - T c ° s $ ) ;  
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Lagrange's equations for the basic variabkes @(t), a(t), and $(t) take the form 

• __ . . a  . ~ • a __~sin~q ~ I ~ = t t , ( ~ ) - - H 2 ( , )  mIa[,p l s m * ÷ ~ P 2 T s i n ~ c ° s ~ ÷  

_ ( ; 2  + ~2) s i n , _ ( a ~ £  @ ~'~) s i n , ]  ; 

~ ( , ) c o s ,  + '~'sin,) = o; l 

a 

- T ~ (@os, + ~ s i n , )  = 0 

Here Hi(;) is the torque of the electric motor; H2(;) is the internal torque of resistance 

to the rotation of the rotor; ~0 = (g/£)i/2 is the natural frequency of the pendulum; 6 1 

is the damping coefficient of the drag force of the medium in which the pendulum moves. 

The above equations describe the complicated interaction between the rotation of the 
shaft of the motor (producing the driving force) and the spatial oscillations of the pendulum. 
The equations are essentially nonllnear and cannot be solved analytically. To simplify (4) 
we introduce the small parameter e = a/£, where we assume th@t a << £. In addition, we 
assume fundamental parametric resonance, where the velocity ~ is close to 2~0: 

(t) = 2% + e ~ .  (5)  
The resonant oscillations of the pendulum are studied using the relations 

(6) 

Using (6) we transform to the new variable pl(~), q:(~), p2(~), q2(~), where • is the slow 
time 
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8 

,~ = ~ , ( t ) .  (7)  

We use the method of averaging, which simplifies the original system of equations some- 
what and in some cases makes it possible to obtain analytical solutions. Without using the 
method of averaging it would be difficult to identify the main trends in the interaction 
process. 

We s u b s t i t u t e  (6) i n t o  (4) and use  t he  r e l a t i o n s  ~(/)= 81/2 ~p~sin +q~cos-~-  and 

~ ( t ) ~ U 2 '  [ - - P ' S l ' ~ + q ' c ° s - ~ 2 ] ~  --2 ' ( ' =  d ~ ) "  A f t e r  ave rag ing  w i th  r e s p e c t  t o  f a s t  t ime  ~ ( t )  

from 0 to 2~, we obtain 

d¥ 
d--~ = N ~ -  N Q -  ~ (Piqi + P,~q~); 

[ I 3 dp, - -  8p~-- v + 1 (p~ + q] + p~ + q~) q~ _ "¥ (P~q2 - -  q~P2) P2 + 2q~; 
d'~ -= 

d~ 

dp,, 1 p2 + q22) q2 (P~q2--q~P2) P~+2q2; ...... dT , = ~ Sp2 - -  v + -g (p~ + q~ + 2 + --~ 

[ ] 3 
d,q2 = - -  6q2 + v + + (p~ + q~ + p2 + q~) P2 + "4 (p~q' - -  qtq2) q~ + 2p2. cl~c 2 

(8)  

Here we use the linear approximation to the static characteristic of the motor, where 

Therefore 

= 8 - T  [H° - -  Ni~] + 8~ 
t 2 . . . .  I + - ~ m a  

(9)  

/ 2ml 2 8~ 
N ~ = [  N° - -2N 1 , a ~ =  1 ~ , 6 ............... 

The purpose  of  t he  p r e s e n t  paper  i s  to  ana lyze  a l l  p o s s i b l e  c l a s s e s  of  s t e a d y - s t a t e  
motion for the system of equations (8). In practice the different types of steady-state 
motion can be found for (8) only with the help of numerical methods of solution. 

With the help of numerical experiments, we determined the existence regions for steady- 
state cahotic motion of the system and analyzed the transition from regular motion to chaotic 
motion. 

The numerical experiments were performed on the Pyramid personal computer (type IBM 
PC/AT-286). The basic computational method used to construct solutions of the differential 
equations was the fourth-order Runge-Kutta method with the use of the Prince-Dorman correc- 
tion procedure. It was verified that the accuracy of the calculations was at least 0(I0-~). 
In constructing the phase portraits of steady-state motion particular attention was paid to 
removing distortions caused by the trajectories of transient processes. The Poincare sec- 
tions maps were constructed with the help of Henson's method [6]. For chaotic oscillations 
the number of points in the sections was at least 104 . The algorithm of Benettin et al [5] 
was used to construct the characteristic Lyapunov exponents. This algorithm was modified in 
order to eliminate the effect of atypical trajectories on the Lyapunov exponents. All of 
the figures shown here were obtained on the personal computer with the help of the GRAPHER 
program. 

We consider the transition from regular to chaotic motion for the following values of 
the parameters of the system and initial conditions 
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N~=0,5, 6=0,5, ~ = l ,  P~=ql=0,1; (±0) 

v=0,  P~=q2= 1. 

The bifurcation parameter was taken to be the slope angle N l of the characteristic of 
the electric drive, which depends on the type of driver used. For 1.75 ~ N I ! 1.43 there 
exists in the system a stable one-stroke limit cycle of period 4.4. At N± = 1.42 thls cycle 
becomes unstable and there is a stable two-stroke limit cycle of period 8.8. Further period- 
doubling bifurcations occur at N I = 1.3 and N I = 1.28 and the system has four and eight- 
stroke limit cycles with periods 17.7 and 35.3, respectively. Figure lb-e show the projec- 
tions of the phase portraits of these cycles onto the (P2, ~) plane. A chaotic attractor 
occurs in the system for the critical value N l = 1.27. The projections of the phase portrait 
of the chaotic attractor are shown in Figs. 2a, b for N l = 1.25. Figure 2c shows the projec- 
tion of the Poincare section (by the plane ~ = -ii) of this attractor onto the (P2, q2) plane. 
The leading Lyapunov exponent for the chaotic attractor shown in Fig. 2a, b is 0.07. 

We note again that in constructing the projections of the phase portraits and Poincare 
sections for chaotic motion there is the danger of committing the typical error of taking 
chaotization of a transient process for steady-state chaotic oscillations. Therefore in the 
discrete values Pi(~), qi(~), ~(t) used to construct the phase portraits and Poincare sec- 
tions a large number of values from the initial time of the numerical calculations should be 
disregarded in order to eliminate distortions in the steady-state phase portraits and sec- 
tions caused by the trajectories of transient processes. 

As the slope angle N I of the characteristic of the electric drive decreases further one 
observes in the system chaos-chaos structural transformations, i.e., a chaotic attractor of 
one type changes into a chaotic attractor of a different type because of internal bifurcation 
phenomena. 

We consider the types of chaotic attractors existing in the system. For N I = 1.16 there 
is a strong transition from the chaotic attrctor shown in Fig. 2a, b to a chaotic attractor 
of a different type. Projections of the phase portrait and Poincaire section (by the plane 
v = -ii) of this latter chaotic attractor are shown in Fig. 2d-f for N± = 1.05. This attrac- 
tor differs from the preceding one by an increase in the amplitudes of the particularly sig- 
nificant oscillations for v. The phase trajectories more densely cover the phase volume. 
The leading Lyapunov exponent of this attractor is 0.22. At N± = 0.99 there is again a 
strong chaos-chaos type transition in the system. Figure 3a-c show projections of the phase 
trajectories and Poincare section (by the plane ~ = -Ii) of an attractor of this kind for 
N I = 0.85. In this type of chaotic motion the Poincare section loses its band structure and 
becomes spread out. The form of the projection of the phase portrait onto the (P2, v) plane 
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is quite different. The leading Laypunov exponent of the chaotic attractor shown in Fig. 
3a-c is 0.42, which shows the increase in the rate of acceleration of close phase trajec- 
tories of this chaotic attractor. 

For further decrease in N I the projections of the strange attractor begin to be com- 
pressed and take the form shown in Fig. 3d-f (for Nl = 0.i). The chaos acquires a structure 
typical for alternations, i.e., the phase trajectories of the system tend to be attracted to 
the zero equilibrium state and hence for a long time they wander inside an extremely small 
neighborhood of this position. Then at an unpredictable time there is a "turbulent explo- 
sion" accompanied by nonperiodic motion back along the turns of the spiral of the attractor. 
The leading Lyapunov exponent of this attractor is 0.20. At Nz = 0.08 the bifurcation pro- 
cess terminates in the equilibrium position Pz = qz = P2 = q2 = 0; v = 6.25. 

It is interesting to compare our results with a system in which the interaction be- 
tween the driving force and the vibrational loads is not taken into account. In this case 
the process is described by a system of equations obtained from (8) as follows. The first 
equation of (8) is dropped and the unknown function v in the second, third, fourth, and 
fifth equations is taken as a constant parameter. The numerical solution for this system 
was constructed for ~ = 0.5, the initial values (I0), and values of v between -250 and 30, 
which are the limits of the oscillation amplitudes in chaotic motion. The quantity ~ was 
varied using a very small step size. In all cases the approach of the system to the stable 
equilibrium state was observed and for Ivl ~ 3 the equilibrium position inpz = qz = P2 = 
q2 = 0, v = const. In this region of the parameter space not only is chaotic motion not 
observed, but even limit cycles do not occur. This shows that neglect of the interaction 
between the vibrational loads and the source of the driving force leads to fundamental errors 
in the description of the steady motion of the system. The assumed superstable simple regular 
equilibrium states are actually unstable in the sense of Lyapunov, but stable in the sense of 
Poisson and are the most complicated examples of chaotic motion. 
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IMPACT-OSCILLATION MOVEMENT OF A RIGID BODY BETWEEN 

RECTILINEAR STOPS CONVERGING AT AN ANGLE 

R. F. Nagaev and A. K. Khodzhaev UDC 539.3 

Because of the need to study the transient modes of operation of certain types of gyro- 
scopic instruments [I], rotors on magnetic or gas bearings [2], and also ball bearings in 
the presence of gaps, there arises the problem of the impact-oscillatory motion of rigid 
bodies in a space bounded by two rectilinear rough surfaces converging at a sharp angle. 
In the present article this problem is examined in its "plane formulation," with the cases 
of a rigid body with two translational degrees of freedom (of a material point) and a round 
body possessing an additional rotational mobility being considered separately. It is assumed 
that in the intervals between collisions with the stops the body moves rectilinearly through 
inertia. Collision of the body with the stops is described within the framework of stereo- 
mechanical impact theory [3, 4]. 

The necessary and sufficient conditions of realization of quasiplastic collision [4] - 
an infinite-impact process of finite duration at the end of which the body arrives at the 
apex of the angle - are determined. 

The Case of a Material Point. If a rigid body undergoes translational, uniform, and 
rectilinear movement in the intervals between collisions, then, without loss of generality, 
it may be taken to be a material point. We will assume that the stops are identical to one 
another in their elastic and dissipative properties, such that the impact interaction with 
them of a material point is characterized by identical values of the velocity restoration co- 
efficient R and the impact friction coefficient f. 

Let us assume that an arbitrary collision of the body with a stop has a nonsliding char- 
acter and that therefore the vector of its restored velocity is perpendicular to the stop. 
It is clear that the subsequent impact-oscillatory movement of the body will be characterized 
by continuous withdrawal from the apex of the angle. Consequently, the above-mentioned quasi- 
plastic impact in this case should be characterized by a sequence of damping sliding colli- 
sions [4]. 

Let us enumerate all collisions of a point with the stops from the beginning of the move- 
ment. Then an arbitrary K-th sliding impact (K = 0, I, 2, ...) will be characterized by the 
relations 

vh = RVksin ~h, uh = Vh(cos~h--×sinek). (i) 

Here V k is the modulus of drop velocity; the angle of its incline to the stop %k for a 

quasiplastic impact may be considered as within the interval (0, 0/2), K = f(l + R), while 
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